Nanobelt self-assembly from an organic n-type semiconductor: propoxyethyl-PTCDI.

نویسندگان

  • Kaushik Balakrishnan
  • Aniket Datar
  • Randy Oitker
  • Hao Chen
  • Jianmin Zuo
  • Ling Zang
چکیده

Nanobelt structures have been fabricated for an n-type semiconductor molecule, N,N'-di(propoxyethyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI). The short alkyloxy side chain not only affords effective pi-pi stacking in polar solvents for self-assembling but also provides sufficient solubility in nonpolar solvents for solution processing. As revealed by both AFM and electron microscopies, the nanobelts have an approximately rectangular cross section, with a typical thickness of about 100 nm and a width in the range of 300-500 nm. The length of the nanobelts ranges from 10 to a few tens of micrometers. The highly organized molecular packing (uniaxial crystalline phase) has been deduced from the measurement of electron diffraction and polarized microscopy imaging. The detected optical axis is consistent with the one-dimensional stacking of the molecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface-assisted one-dimensional self-assembly of a perylene based semiconductor molecule.

Chloroform-vapor annealing of thin films of propoxyethyl perylene tetracarboxylic diimide (PE-PTCDI, an n-type semiconductor) deposited on glass or mica leads to formation of well-defined one-dimensional self-assemblies (e.g. nanobelts), which show optically uniaxial properties as demonstrated by the linearly polarized emission.

متن کامل

Enhancing one-dimensional charge transport through intermolecular pi-electron delocalization: conductivity improvement for organic nanobelts.

Electrical conductivity of organic semiconductor materials represents one of the critical parameters that control the performance efficiency of organic-based electronic and optoelectronic devices. For materials assembled from planar aromatic molecules, evidence suggests that charge carrier mobility is usually maximized along the direction of cofacial π-π stacking of the molecules.1-3 While such...

متن کامل

Donor–acceptor single cocrystal of coronene and perylene diimide: molecular self-assembly and charge-transfer photoluminescence

The research on donor–acceptor (D–A) cocrystalline structures based on organic semiconductive molecules has drawn great attention due to their unique optical and electronic properties. Among the building block molecules, derivatives of perylene-3,4,9,10-tetracarboxylic-3,4,9,10-diimides (PTCDI) are of particular interest as these molecules form high performance n-type semiconductors with strong...

متن کامل

Self-assembly of perylenediimide and naphthalenediimide nanostructures on glass substrates through deposition from the gas phase.

Micrometer-long nanobelt and nanowires from deposition of perylenediimide (PTCDI) and naphthalenediimide (NPDI) in glass substrates from the gas phase were demonstrated. The electron diffraction pattern of PTCDI shows that the PTCDI molecules are oriented with their long axis perpendicular to the belt and the pi-pi stacking direction parallel to the belt. No crystal structure of the NPDI nanowi...

متن کامل

Effect of side-chain substituents on self-assembly of perylene diimide molecules: morphology control.

Effect of side-chain substitutions on the morphology of self-assembly of perylene diimide molecules has been studied with two derivatives modified with distinctly different side-chains, N,N'-di(dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide (DD-PTCDI) and N,N'-di(nonyldecyl)-perylene-3,4,9,10-tetracarboxylic diimide (ND-PTCDI). Due to the different side-chain interference, the self-assembly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 30  شماره 

صفحات  -

تاریخ انتشار 2005